On Duality between Local Maximum Stable Sets of a Graph and Its Line-Graph
نویسندگان
چکیده
G is a König-Egerváry graph provided α(G) +μ(G) = |V (G)|, where μ(G) is the size of a maximum matching and α(G) is the cardinality of a maximum stable set, [3], [22]. S is a local maximum stable set of G, and we write S ∈ Ψ(G), if S is a maximum stable set of the subgraph induced by S ∪N(S), where N(S) is the neighborhood of S, [12]. Nemhauser and Trotter Jr. proved that any S ∈ Ψ(G) is a subset of a maximum stable set of G, [20]. In this paper we demonstrate that if S ∈ Ψ(G), the subgraph H induced by S∪N(S) is a König-Egerváry graph, and M is a maximum matching in H , then M is a local maximum stable set in the line graph of G.
منابع مشابه
Line completion number of grid graph Pn × Pm
The concept of super line graph was introduced in the year 1995 by Bagga, Beineke and Varma. Given a graph with at least r edges, the super line graph of index r, Lr(G), has as its vertices the sets of r-edges of G, with two adjacent if there is an edge in one set adjacent to an edge in the other set. The line completion number lc(G) of a graph G is the least positive integer r for which Lr(G) ...
متن کاملGreedoids on Vertex Sets of Unicycle Graphs
A maximum stable set in a graph G is a stable set of maximum size. S is a local maximum stable set of G, and we write S ∈ Ψ(G), if S is a maximum stable set of the subgraph induced by S ∪ N(S), where N(S) is the neighborhood of S. G is a unicycle graph if it owns only one cycle. It is known that the family Ψ(T ) of a forest T forms a greedoid on its vertex set. In this paper we completely chara...
متن کاملOn the edge geodetic and edge geodetic domination numbers of a graph
In this paper, we study both concepts of geodetic dominatingand edge geodetic dominating sets and derive some tight upper bounds onthe edge geodetic and the edge geodetic domination numbers. We also obtainattainable upper bounds on the maximum number of elements in a partitionof a vertex set of a connected graph into geodetic sets, edge geodetic sets,geodetic domin...
متن کاملOn Diameter of Line Graphs
The diameter of a connected graph $G$, denoted by $diam(G)$, is the maximum distance between any pair of vertices of $G$. Let $L(G)$ be the line graph of $G$. We establish necessary and sufficient conditions under which for a given integer $k geq 2$, $diam(L(G)) leq k$.
متن کاملMORE ON EDGE HYPER WIENER INDEX OF GRAPHS
Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge set E(G). The (first) edge-hyper Wiener index of the graph G is defined as: $$WW_{e}(G)=sum_{{f,g}subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=frac{1}{2}sum_{fin E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$ where de(f,g|G) denotes the distance between the edges f=xy and g=uv in E(G) and de(f|G)=∑g€(G)de(f,g|G). In thi...
متن کامل